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INTRODUCTION

The objectives of this work are: (1) to understand the mechanical properties of
gun propellants. e.g., failure o,.onditions as a function of composition, temperature,
processing, etc.; (2) to determine the details of how mechanical failure can lead to
undesirable and/or hazardous interior ballistics; (3) to use the understanding gained to
modify composition, processing, etc., to eliminate/minimize undesirable properties
within the constraints of required perfor:nance; and (4) to develop standard testing
procedures to evaluate a given propellant relative to (2) above. The approach then is to
study the mechanical properties as a function of the appropriate parameters such as
composition and temperature: to determine the conditions for how mechanical failure
can lead to undesirable and hazardous interior ballistics' to use the results and the
understanding gained to make the aopropriate modifications; and then to perform the
necessary tests to demonstrate that a change has been accomplished. This report
addresses 1 and 2.

One possible scenario for the role of mechanical failure in interior ballistic ab-
normalities involves the localized fracture of propellant grains with a resultant increase
in the localized pressurization rate leading to the generation of pressure waves in the
gun propellant chamber (ref 1). There is a correlation between the magnitude of the
pressure waves and the maximurn chamber pressure, with indications that under some
conditions the peak pressure build-up is sufficient to cause breech blows.

EXPERIMENTAL

The investigations have proceeded in three general area: studies of mechanical
properties; use of the standard closed bomb test to determine the effect of mechanical
failure on the rate of pressurization; and studies of structural phase transitions and their
relationship to mechanical properties

Mechanical Properties Studies

All experimronts wore performed in compression with the samples machined from
grains into right circular cylinders. The ends of the samples were lubricated to minimize
friction. The ends of the samples were lubricated to minimize friction. Two strain rates
were used. one leading to "failure" in the millisecond (interior ballistic) time frame and
the other quasi-static. Measurements were made as a function of temperature between
approximately 80 C and -60 C (refs 2 through 4).



Closed Bomb Studies

Standard closed bomb techniques were used to obtain dp/dt versus p and p
versus t (refs 4 and 5).

Structure; Phase Transitions

Standard thermal analysis techniques including thermal mechanical analysis

(TMA) and differential thermal analysis (DTA) were employed.

Table 1. Table of propellants sti'died

M1 M8 M26 JA2 M30A2

Nitrocellulose 85.0 52.2 67.5 63.5 27.0

%Nitrogen 13.15 13.25 13.15 13.00 12.57

Nitroglycerin --- 43-0 25.0 14.0 22.5

Nitroguanidine ............- 46.3

Ethyl centralite --- 0.6 6.0 --- 1.5

Diethylene glycol dinitrate ......... 21.7 ---

Dinitrotoluene 10.0

Dibutylphthalate 5.0 ......

Diethylphthalate 3.0 ---

Potassium nitrate .. 1.20 0.75 2.75

Barium nitrate - 0.75

M agnesium oxide ......... 0.05

Akardite II --- 0.05

Graphite --- 0.30 0.07

Graphite glaze, max --- 0.15 0.50 0.15
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*: Studies have been made of several propellant formulations. The compositions of
propellants considered in this report are given in table 1. While the emphasis to date
has been on triple-base propellants, investigations have also been made of double-
base and single-base propellants.

RESULTS AND DISCUSSION

Mechanical Properties

The results for a triple-base propellant are presented and compared with those for
a double-base propellant. Compressive stress versus strain curves are given in figure 1
as a function of temperature for M30A2 at the higher strain rate. The results are typical
of a polymer/plasticizer system with plastic flow apparently occurring at the higher
temperatures. With decreasing temperature the apparent modulus and ultimate
strength increase while the strain at failure and the work to produce failure decrease. A
ductile-to-brittle-like change in grain failure occurs between 00C and -150C as
evidenced by the sample breakup (fig. 2). These photographs show the sample and/or
fragments after compression at various temperatures. At room temperature only mod-
erate cracking is observed, even for large compressive strains, while at low temperature
severe fragmentation occurs at small strains (fig. 1).

Compressive stress versus strain curves are given in figure 3 for the same propel-
lant over approximately the same temperature range but at the lower strain rate., The
results show large strains at -45)C and indicate the importance of strain rate for the
occurrence of brittle fragmentation-type failure in this propellant. It must be em-
phasized, however, that in no case have samples been sectioned to search for evi-
dence of internal cracking. All comments pertaining to failure relate to external appear-
ances and the stress versus strain curves.

Stress versus strain is given in figure 4 for the modified double-base propellant
JA2 at two temperatures and at the higher strain rate. JA2 is made using a solventless
process, while M30A2 (and the other propellants of table 1) is made using solvents. A
very limited number of samples of this propellant were available; therefore, the results
must be taken as somewhat preliminary. As for the triple-base propellant, there is
evidence of plastic flow at the higher temperature and a fragmentation type failure at
-45°C; some plastic flow may occur at -451C. The degree of brittleness encountered at
lower temperatures for M30A2 is not observed for JA2 as evidenced by the photo-
graphs in figure 5 for the two temperatures. Side and top views of the samples are

1J. Zucker, private communication.
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given after compression. However, by going to a lower temperature and a slightly
higher strain rate, brittle fragmentation was also observed for JA2.2 Plans have been
made to study the fracture surfaces by scanning electron microscopy and x-ray
photoelectron spectroscopy to determine the role of added solids in the failure of the
triple-base propellants. Differences in plasticizers and processing may also account for
some of the differences in mechanical failure characteristics of M30A2 and JA2.

Compressive stress versus strain curves for the double-base M26 propellant are
given in figure 6 at two temperatures and the lower strain rate. The results indicate a
large "softening" at the higher temperature. A phase transition has been observed by
TMA in the vicinity of 400C. This temperature is between the two temperatures of figure
6 and probably is associated with the differences between the two curves of this figure.

Closed Bomb Studies

Typical closed bomb results are given in figure 7 in the form of dp/dt versus p
curves for undeformed grains of M30A2 propellant (refs 3 and 4). Also given are the
results for fragments of grains of this propellant obtained by compression at -45TC at
the higher strain rate. A large increase in dp/dt is observed, which is to be expected
because of the large increase in surface area due to fragmentation. Significant in-
creases in dp/dt were also observed for grains deformed at 200C. These results lend
support to the hypothesis that fractured grains leading to high localized dp/dt could
contribute to the generation of pressure waves.

Structural Phase Transitions

Thermal analysis techniques have been used to investigate phase transitions in
the polymer/plasticizer propellant system. The objective of this part of the program is to
relate mechanical properties to other easily measured physical properties of the propel-
lants. This can lead to further understanding of the mechanical properties, may provide
a simple tool for characterizing these properties, and may also be used as a guide to
propellant modifications for improved mechanical properties.

DTA data are given in figure 8 for nitroglycerin (NG) and M8 propellant. 3 The
onset of a "phase transition",4 at approximately -70'C for NG and at a somewhat

2 M. Mezger, unpublished results.

3E. Turngren and Y. Carignan, private communication.

"The phrase "phase transition" as used in this report refers to a glass transition. See,
for example, J. Jackie, Phil. Mag., B65, 113, 1987.
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higher temperature for M8 strongly suggests that the phase transition in M8 is related to
the NG. Other studies indicate that NG undergoes a phase transition in this tempera-
ture range from a "glassy" solid to a highly viscous liquid.3

TMA data are given in figure 9 for M30A2 propellant. Again a transition (change of
thermal expansion coefficient) is observed in the same low temperature range, suggest-
ing a relationship to NG. Reference to figure 1 shows no indication of plastic flow in this
low temperature range. Therefore, there may well be a relationship between this phase
transition and the severe embrittlement observed at low temperatures. Additional work
is clearly necessary to clarify these matters. It must be noted that the TMA data are
taken at an order of magnitude lower strain rate than the data of figure 1. The relation-
ship of this low temperature phase transition to the apparent ductile-to-brittle transition
between -150C and 00C is also not apparent.

An additional phase transition is observed at about 400C for M30A2 (not shown in
fig. 9). This phase transition is reproducible only under certain conditions of sample
thermal history. However, transitions at approximately the same temperature are
observed by TMA for M26 and M1 suggesting that they are due to nitrocellulose (NC).
This phase transition may account for the large difference in mechanical properties of
M26 above and below 400C (fig. 6). Phase transitions have not been detected in the
low temperature range (above -80°C) for M1 and the results for M26 are inconclusive,
i.e., the experimental results do not definitely establish or rule out the existence of a
phase transition in the vicinity of -701C. These results are consistent with the low
temperature transition being associated with NG since M1 does not contain NG while
M26 does contain NG. Clearly, more work is necessary to understand these phase
transitions and to relate them to mechanical properties.

SUMMARY

The mechanical properties of propellants exhibit the general temperature and
strain rate dependencies to be expected of polymeric systems. A triple-base propellant
has been found to have a ductile-to-brittle-like transition between 00C and -15°C at
strain rates leading to failure in the millisecond time frame (interior ballistic time frame).
A modified double-base propellant also shows embrittlement at low temperature but
does not give the extreme fragmentation characteristic of the triple-base propellant.
Closed bomb tests indicate that the brittle fragmentation type failure could lead to high
localized pressurization rates and so to abnormal and hazardous interior ballistic condi-
tions. Thermal analysis studies indicate two structural phase transitions which can be
tentatively identified with propellant composition.

SIbid.
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